Posted in Information Technology

# Depth First Search or DFS for a Graph

Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid processing a node more than once, we use a boolean visited array.

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices, then 2 will be processed again and it will become a non-terminating process. A Depth First Traversal of the following graph is 2, 0, 1, 3. See this post for all applications of Depth First Traversal.
Following are implementations of simple Depth First Traversal. The C++ implementation uses adjacency list representation of graphs. STL‘s list container is used to store lists of adjacent nodes

// Java program to print DFS traversal from a given given graph
import java.io.*;
import java.util.*;

// This class represents a directed graph using adjacency list
// representation
class Graph
{
private int V; // No. of vertices

// Array of lists for Adjacency List Representation

// Constructor
Graph(int v)
{
V = v;
for (int i=0; i<v; ++i)
}

//Function to add an edge into the graph
{
}

// A function used by DFS
void DFSUtil(int v,boolean visited[])
{
// Mark the current node as visited and print it
visited[v] = true;
System.out.print(v+” “);

// Recur for all the vertices adjacent to this vertex
while (i.hasNext())
{
int n = i.next();
if (!visited[n])
DFSUtil(n, visited);
}
}

// The function to do DFS traversal. It uses recursive DFSUtil()
void DFS(int v)
{
// Mark all the vertices as not visited(set as
// false by default in java)
boolean visited[] = new boolean[V];

// Call the recursive helper function to print DFS traversal
DFSUtil(v, visited);
}

public static void main(String args[])
{
Graph g = new Graph(4); 